skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sachdeva, Rakesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. p-Donor/Acceptor charge-transfer (CT) interactions between redox-complementary p-systems often give rise to non-native optical and electronic properties that are beneficial for modern electronics and energy technologies. However, the formation of extended supramolecular p-donor/acceptor stacks capable of long-range charge transport requires ingenious design strategies that can help reinforce otherwise weak p-donor/acceptor noncovalent interactions. Herein, we demonstrate that a large tetragonal prismatic metal–organic cage (MOC28+) having two parallel p-donor tetrakis(4- carboxyphenyl)-Zn-porphyrin (ZnTCPP) faces located B14 Å apart can accommodate up to three redox-complementary planar aromatic guests (either three p-acceptor guests or two p-acceptors surrounding one p-donor guest) between the ZnTCPP faces, forming extended p-donor/acceptor stacks. While empty MOC28+ behaves as an insulator due to the lack of charge delocalization across its large cavity, its inclusion complexes saturated with p-acidic hexaazatriphenylene hexacarbonitrile (HATHCN) and hexacyanotriphenylene (HCTP) displayed noticeably higher electrical conductivity (8.7   10 6 and 1.3   10 6 S m 1, respectively) owing to more facile charge transport through the p-donor/ acceptor stacks composed of the p-acidic guests intercalated between the ZnTCPP faces. Thus, this work demonstrates that tetragonal prismatic metallacages with two parallel electroactive faces can facilitate the creation of extended p-donor/acceptor stacks by encapsulating redox-complementary planar guests, which in turn facilitates through-space charge delocalization, generating non-native electrical conductivity. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  2. Free, publicly-accessible full text available June 6, 2026